Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Elife ; 122024 Apr 03.
Article En | MEDLINE | ID: mdl-38567749

Vitamin D possesses immunomodulatory functions and vitamin D deficiency has been associated with the rise in chronic inflammatory diseases, including asthma (Litonjua and Weiss, 2007). Vitamin D supplementation studies do not provide insight into the molecular genetic mechanisms of vitamin D-mediated immunoregulation. Here, we provide evidence for vitamin D regulation of two human chromosomal loci, Chr17q12-21.1 and Chr17q21.2, reliably associated with autoimmune and chronic inflammatory diseases. We demonstrate increased vitamin D receptor (Vdr) expression in mouse lung CD4+ Th2 cells, differential expression of Chr17q12-21.1 and Chr17q21.2 genes in Th2 cells based on vitamin D status and identify the IL-2/Stat5 pathway as a target of vitamin D signaling. Vitamin D deficiency caused severe lung inflammation after allergen challenge in mice that was prevented by long-term prenatal vitamin D supplementation. Mechanistically, vitamin D induced the expression of the Ikzf3-encoded protein Aiolos to suppress IL-2 signaling and ameliorate cytokine production in Th2 cells. These translational findings demonstrate mechanisms for the immune protective effect of vitamin D in allergic lung inflammation with a strong molecular genetic link to the regulation of both Chr17q12-21.1 and Chr17q21.2 genes and suggest further functional studies and interventional strategies for long-term prevention of asthma and other autoimmune disorders.


Asthma , Pneumonia , Vitamin D Deficiency , Mice , Animals , Humans , Vitamin D/pharmacology , Interleukin-2 , Inflammation , Th2 Cells , Vitamin D Deficiency/metabolism , Vitamins
2.
medRxiv ; 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38260473

Chronic Obstructive Pulmonary Disease (COPD) is a complex, heterogeneous disease. Traditional subtyping methods generally focus on either the clinical manifestations or the molecular endotypes of the disease, resulting in classifications that do not fully capture the disease's complexity. Here, we bridge this gap by introducing a subtyping pipeline that integrates clinical and gene expression data with variational autoencoders. We apply this methodology to the COPDGene study, a large study of current and former smoking individuals with and without COPD. Our approach generates a set of vector embeddings, called Personalized Integrated Profiles (PIPs), that recapitulate the joint clinical and molecular state of the subjects in the study. Prediction experiments show that the PIPs have a predictive accuracy comparable to or better than other embedding approaches. Using trajectory learning approaches, we analyze the main trajectories of variation in the PIP space and identify five well-separated subtypes with distinct clinical phenotypes, expression signatures, and disease outcomes. Notably, these subtypes are more robust to data resampling compared to those identified using traditional clustering approaches. Overall, our findings provide new avenues to establish fine-grained associations between the clinical characteristics, molecular processes, and disease outcomes of COPD.

4.
bioRxiv ; 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37425858

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with various proposed environmental risk factors and a rapidly increasing prevalence. Mounting evidence suggests a potential role of vitamin D deficiency in ASD pathogenesis, though the causal mechanisms remain largely unknown. Here we investigate the impact of vitamin D on child neurodevelopment through an integrative network approach that combines metabolomic profiles, clinical traits, and neurodevelopmental data from a pediatric cohort. Our results show that vitamin D deficiency is associated with changes in the metabolic networks of tryptophan, linoleic, and fatty acid metabolism. These changes correlate with distinct ASD-related phenotypes, including delayed communication skills and respiratory dysfunctions. Additionally, our analysis suggests the kynurenine and serotonin sub-pathways may mediate the effect of vitamin D on early childhood communication development. Altogether, our findings provide metabolome-wide insights into the potential of vitamin D as a therapeutic option for ASD and other communication disorders.

5.
Nat Genet ; 54(4): 481-491, 2022 04.
Article En | MEDLINE | ID: mdl-35410381

Mammalian chromosomes are organized into megabase-sized compartments that are further subdivided into topologically associating domains (TADs). While the formation of TADs is dependent on cohesin, the mechanism behind compartmentalization remains enigmatic. Here, we show that the bromodomain and extraterminal (BET) family scaffold protein BRD2 promotes spatial mixing and compartmentalization of active chromatin after cohesin loss. This activity is independent of transcription but requires BRD2 to recognize acetylated targets through its double bromodomain and interact with binding partners with its low-complexity domain. Notably, genome compartmentalization mediated by BRD2 is antagonized on the one hand by cohesin and on the other hand by the BET homolog protein BRD4, both of which inhibit BRD2 binding to chromatin. Polymer simulation of our data supports a BRD2-cohesin interplay model of nuclear topology, in which genome compartmentalization results from a competition between loop extrusion and chromatin-state-specific affinity interactions.


Nuclear Proteins , Transcription Factors , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromosomes/genetics , Chromosomes/metabolism , Mammals/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Domains , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Cells ; 11(2)2022 01 13.
Article En | MEDLINE | ID: mdl-35053372

Aberrant remodeling of the asthmatic airway is not well understood but is thought to be attributable in part to mechanical compression of airway epithelial cells. Here, we examine compression-induced expression and secretion of the extracellular matrix protein tenascin C (TNC) from well-differentiated primary human bronchial epithelial (HBE) cells grown in an air-liquid interface culture. We measured TNC mRNA expression using RT-qPCR and secreted TNC protein using Western blotting and ELISA. To determine intracellular signaling pathways, we used specific inhibitors for either ERK or TGF-ß receptor, and to assess the release of extracellular vesicles (EVs) we used a commercially available kit and Western blotting. At baseline, secreted TNC protein was significantly higher in asthmatic compared to non-asthmatic cells. In response to mechanical compression, both TNC mRNA expression and secreted TNC protein was significantly increased in both non-asthmatic and asthmatic cells. TNC production depended on both the ERK and TGF-ß receptor pathways. Moreover, mechanically compressed HBE cells released EVs that contain TNC. These data reveal a novel mechanism by which mechanical compression, as is caused by bronchospasm, is sufficient to induce the production of ECM protein in the airway and potentially contribute to airway remodeling.


Compressive Strength , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Lung/cytology , Stress, Mechanical , Tenascin/metabolism , Humans , MAP Kinase Signaling System , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Tenascin/genetics
7.
Sci Adv ; 7(30)2021 07.
Article En | MEDLINE | ID: mdl-34301595

Epithelial tissue can transition from a jammed, solid-like, quiescent phase to an unjammed, fluid-like, migratory phase, but the underlying molecular events of the unjamming transition (UJT) remain largely unexplored. Using primary human bronchial epithelial cells (HBECs) and one well-defined trigger of the UJT, compression mimicking the mechanical effects of bronchoconstriction, here, we combine RNA sequencing data with protein-protein interaction networks to provide the first genome-wide analysis of the UJT. Our results show that compression induces an early transcriptional activation of the membrane and actomyosin network and a delayed activation of the extracellular matrix (ECM) and cell-matrix networks. This response is associated with a signaling cascade that promotes actin polymerization and cellular motility through the coordinated interplay of downstream pathways including ERK, JNK, integrin signaling, and energy metabolism. Moreover, in nonasthmatic versus asthmatic HBECs, common genomic patterns associated with ECM remodeling suggest a molecular connection between airway remodeling, bronchoconstriction, and the UJT.


Asthma , Epithelial Cells , Asthma/metabolism , Cell Movement/genetics , Epithelial Cells/metabolism , Epithelium/metabolism , Genomics , Humans
8.
J Chem Phys ; 153(22): 224503, 2020 Dec 14.
Article En | MEDLINE | ID: mdl-33317300

We study, with molecular dynamics simulations, a lysozyme protein immersed in a water-trehalose solution upon cooling. The aim is to understand the cryoprotectant role played by this disaccharide through the modifications that it induces on the slow dynamics of protein hydration water with its presence. The α-relaxation shows a fragile to strong crossover about 20° higher than that in the bulk water phase and 15° higher than that in lysozyme hydration water without trehalose. The protein hydration water without trehalose was found to show a second slower relaxation exhibiting a strong to strong crossover coupled with the protein dynamical transition. This slower relaxation time importantly appears enormously slowed down in our cryoprotectant solution. On the other hand, this long-relaxation in the presence of trehalose is also connected with a stronger damping of the protein structural fluctuations than that found when the protein is in contact with the pure hydration water. Therefore, this appears to be the mechanism through which trehalose manifests its cryoprotecting function.


Muramidase/chemistry , Trehalose/chemistry , Water/chemistry , Anions/chemistry , Chlorides/chemistry , Kinetics , Molecular Dynamics Simulation , Oxygen/chemistry
9.
Sci Rep ; 10(1): 18302, 2020 10 27.
Article En | MEDLINE | ID: mdl-33110128

In development of an embryo, healing of a wound, or progression of a carcinoma, a requisite event is collective epithelial cellular migration. For example, cells at the advancing front of a wound edge tend to migrate collectively, elongate substantially, and exert tractions more forcefully compared with cells many ranks behind. With regards to energy metabolism, striking spatial gradients have recently been reported in the wounded epithelium, as well as in the tumor, but within the wounded cell layer little is known about the link between mechanical events and underlying energy metabolism. Using the advancing confluent monolayer of MDCKII cells as a model system, here we report at single cell resolution the evolving spatiotemporal fields of cell migration speeds, cell shapes, and traction forces measured simultaneously with fields of multiple indices of cellular energy metabolism. Compared with the epithelial layer that is unwounded, which is non-migratory, solid-like and jammed, the leading edge of the advancing cell layer is shown to become progressively more migratory, fluid-like, and unjammed. In doing so the cytoplasmic redox ratio becomes progressively smaller, the NADH lifetime becomes progressively shorter, and the mitochondrial membrane potential and glucose uptake become progressively larger. These observations indicate that a metabolic shift toward glycolysis accompanies collective cellular migration but show, further, that this shift occurs throughout the cell layer, even in regions where associated changes in cell shapes, traction forces, and migration velocities have yet to penetrate. In characterizing the wound healing process these morphological, mechanical, and metabolic observations, taken on a cell-by-cell basis, comprise the most comprehensive set of biophysical data yet reported. Together, these data suggest the novel hypothesis that the unjammed phase evolved to accommodate fluid-like migratory dynamics during episodes of tissue wound healing, development, and plasticity, but is more energetically expensive compared with the jammed phase, which evolved to maintain a solid-like non-migratory state that is more energetically economical.


Energy Metabolism , Epithelium/metabolism , Glycolysis , Animals , Cell Movement , Dogs , Glucose/metabolism , Madin Darby Canine Kidney Cells/metabolism , Membrane Potential, Mitochondrial , NAD/metabolism , Oxidation-Reduction
10.
Nat Methods ; 17(4): 430-436, 2020 04.
Article En | MEDLINE | ID: mdl-32203384

To image the accessible genome at nanometer scale in situ, we developed three-dimensional assay for transposase-accessible chromatin-photoactivated localization microscopy (3D ATAC-PALM) that integrates an assay for transposase-accessible chromatin with visualization, PALM super-resolution imaging and lattice light-sheet microscopy. Multiplexed with oligopaint DNA-fluorescence in situ hybridization (FISH), RNA-FISH and protein fluorescence, 3D ATAC-PALM connected microscopy and genomic data, revealing spatially segregated accessible chromatin domains (ACDs) that enclose active chromatin and transcribed genes. Using these methods to analyze genetically perturbed cells, we demonstrated that genome architectural protein CTCF prevents excessive clustering of accessible chromatin and decompacts ACDs. These results highlight 3D ATAC-PALM as a useful tool to probe the structure and organizing mechanism of the genome.


DNA/metabolism , Genomics/methods , In Situ Hybridization, Fluorescence/methods , Microscopy/methods , Chromosome Painting , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Image Processing, Computer-Assisted , Sequence Analysis, DNA/methods
11.
Sci Rep ; 10(1): 966, 2020 01 22.
Article En | MEDLINE | ID: mdl-31969610

Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufficient to induce inflammatory, late repair, and fibrotic pathways. Remarkably, this molecular profile of non-asthmatic cells after compression recapitulated the profile of asthmatic cells before compression. Together, these results show that even in the absence of any inflammatory stimulus, mechanical compression alone is sufficient to induce an asthma-like molecular signature.


Airway Remodeling/physiology , Asthma/genetics , Bronchi/pathology , Epithelial Cells/metabolism , Gene Expression , Stress, Mechanical , Epithelial Cells/pathology , Humans
...